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We investigate the dispersion relations of nonlinear periodic wave trains in excitable systems which describe
the dependence of the propagation velocity on the wavelength. Pulse interaction by oscillating pulse tails
within a wave train leads to bistable wavelength bands, in which two stable and one unstable wave train coexist
for the same wavelength. The essential spectra of the unstable wave trains exhibit a circle of eigenvalues with
positive real parts which is detached from the imaginary axis. We describe the destruction of the bistable
dispersion curve and the formation of isolas of wave trains in a sequence of transcritical bifurcations unfolding
into pairs of saddle-node bifurcations. It turns out that additional dispersion curves of unstable wave trains play
an important role in the destruction of the bistable dispersion curve.
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I. INTRODUCTION

Excitation waves are observed in various physical, bio-
logical, and chemical systems such as catalytic surface reac-
tions, neurons, cardiac muscle tissue, intracellular Ca2+ dy-
namics, and autocatalytic chemical reactions �1–5�.

Traveling waves in one spatial dimension occur as soli-
tary pulses or wave trains. Periodic wave trains are charac-
terized by a dispersion relation, which describes the depen-
dence of the propagation velocity c on the wavelength L. We
call an increase of velocity with increasing wavelength nor-
mal dispersion, whereas anomalous dispersion is a decrease
of velocity with increasing wavelength. In the case of normal
dispersion �compare Fig. 1�a�� the solitary pulse is the fastest
one. Wave trains with a finite wavelength propagate at a
smaller velocity due to partial inhibition by the wake of the
preceding pulse. There are nonmonotonic dispersion rela-
tions with a maximum velocity at a finite wavelength which
leads to attractive pulse interaction within a wave train or a
pulse pair �6–9�. Systems with oscillating dispersion curves
�Fig. 1�b�� exhibit coexisting free spiral waves of different
wavelengths �10� and particlelike traveling front deforma-
tions that mediate transitions within stable bound pulse pairs
�11�.

Recently, it was shown that the Oregonator model, which
describes the Belousov-Zhabotinsky reaction, comprises in
addition to an oscillatory dispersion a multivalued disper-
sion. Different stable wave trains coexist for the same wave-
length �12�. Another type of multivalued dispersion was
found in a model for intracellular Ca2+ waves �13�. The oc-
currence of a velocity gap in this dispersion destroys all pe-
riodic patterns which would have wavelengths within the
gap.

The present work is a numerical case study of the
FitzHugh-Nagumo �FHN� model in one dimension, which is

a generic reaction-diffusion model for excitable media. It is
well known that the model reproduces monotonic and oscil-
latory dispersion curves �Fig. 1�; see also Ref. �14�. Here, we
demonstrate the existence and describe the destruction of a
bistable dispersion curve. The destruction entails the emer-
gence of isolas of wave trains. The presence of other disper-
sion curves is found to be essential for the comprehensive
understanding of the fragmentation of the bistable dispersion
relation. The descriptions of wave trains is completed by a
linear stability analysis.

The paper is structured as follows. Foremost we sketch
basic features of the local FHN dynamics. We outline briefly
the framework for the calculation of traveling waves and
spectra of periodic wave trains. Then we present the bistable
dispersion relation and discuss the stability of the corre-
sponding wave trains. Finally we introduce additional disper-
sion curves that coexist with the bistable one and illustrate
the fragmentation of the latter, which involves the emergence
of isolas of wave trains.

II. MODEL AND METHODS

We consider a reaction-diffusion system in one spatial di-
mension with a fast activator u and a slow inhibitor v:
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FIG. 1. Propagation velocity c of a periodic wave train vs wave-
length L. The upper branch depicts �a� a monotonically increasing
and �b� an oscillating dispersion relation, respectively. �a� a=0.12,
�b� a=0.02; b=0.25, �=0.3�10−2. In both �a� and �b�, the lower
branch corresponds to unstable waves.
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u = f�u,v� +
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�

�t
v = g�u,v� . �1�

The kinetics is given by the FHN equations

f�u,v� = − u�u − 1��u − a� − v ,

g�u,v� = ��u − bv� . �2�

Parameter a adjusts the excitability. It is used as the main
bifurcation parameter. The cubic and the linear nullcline
f�u ,v�=0 and g�u ,v�=0, respectively, intersect in a unique
stable fixed point of the local dynamics �u ,v�= �0,0� for our
choice of b=0.25, �=0.3�10−2, and a close to zero. Upon
decreasing a, the stable node turns into a stable focus and
becomes unstable through a supercritical Hopf bifurcation at
ahb=−�b. The amplitude and period of the Hopf cycle blow
up in a Canard explosion at ac�ahb �15�.

A periodic wave train and a solitary pulse of the reaction-
diffusion equation �1� propagate with constant velocity c
while maintaining their shape. They are stationary solutions
in a comoving frame with coordinate �=x−ct. In particular,
they correspond to a periodic orbit �wave train� and a ho-
moclinic connection �solitary pulse� of the traveling wave
ordinary differential equation �ODE�

d

d��u

v

w
� =�

w

−
1

c
g�u,v�

− f�u,v� − cw
� . �3�

The eigenvalues of the fixed point �u ,v ,w�= �0,0 ,0� deter-
mine the asymptotic behavior of the homoclinic connection.
We consider a saddle focus with a pair of complex conjugate
eigenvalues and one real eigenvalue. When a periodic orbit
crosses a small neighborhood of the fixed point, those com-
plex eigenvalues affect the periodic orbit, too.

To determine the stability of a periodic wave train
u�c= (uc��� ,vc���) with wavelength L we add a small pertur-
bation u��� , t�=u�c���+�u��� , t� and linearize the comoving
frame reaction-diffusion equation. Using the separation an-

satz �u��� , t�=e�tU� ��� we obtain the eigenvalue problem

�U� = Ju�c
· U� + c

d

d�
U� + D d2

d�2U� �4�

with

Ju�c��+L� = Ju�c���, �5�

where Ju�c��� represents the Jacobian matrix of (f�u�� ,g�u��)
along the periodic wave train and D=diag�1,0� the diffusion
matrix. Ju�c��� is L periodic in �. The real part of � is the

growth rate of the eigenfunction U� ���. The spectrum and the
stability of a periodic wave train depend on the boundary
conditions. The spectrum of an infinitely extended periodic
wave train consists of the essential spectrum only �16�. A

complex number � belongs to the essential spectrum exactly
if the eigenvalue equation �4� admits a solution on the inter-
val �0,L� with boundary conditions

�U,V,U���L� = ei2�	�U,V,U���0� �6�

and a real 	� �0,1�. The latter condition provides the exis-
tence of a solution of Eq. �4� that is a product of a long-
wavelength factor exp�i�2�	 /L��� and an L-periodic func-
tion.

If we confine the wave train in periodic boundary con-
ditions, only certain points of the essential spectrum per-
sist as eigenvalues. More precisely, a wave train with
NL-periodic boundary conditions stands for N=1,2 ,3 , . . .
equally spaced high-amplitude excitations on a ring with
perimeter NL. Allowed eigenfunctions are selected by
	=0,1 /N ,2 /N , . . . , �N−1� /N. Choosing proper values of 	,
parametrized curves of the essential spectrum ��	� provide
stability informations for a wave train enclosed in
NL-periodic boundary conditions. The Goldstone mode
which is the derivative of the wave train with respect to �
belongs to the eigenvalue �=0 with 	=0.

We compute single pulses, periodic wave trains, and
curves of the essential spectrum ��	� of wave trains by a
path following method using the software for continuation
and bifurcation problems in ODEs AUTO �17,18�. Alterna-
tively, applying L-periodic boundary conditions, we expand
the functions U��� and V��� in the eigenvalue equation �4� in
a finite number of Fourier modes. The resulting system of
coupled linear equations for Fourier coefficients is solved
using the standard package LAPACK.

III. BISTABLE DISPERSION RELATION

In the traveling wave ODE �3�, a solitary pulse is repre-
sented by a homoclinic connection to a fixed point, and pe-
riodic wave trains are represented by limit cycles. Thus, the
problem of the existence of periodic wave trains in Eq. �1�
and their dispersion relations is equivalent to the existence of
branches of limit cycles in the traveling wave ODE �3�.
Wave trains plotted in Figs. 1 and 2 are represented by limit
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FIG. 2. Bistable dispersion relation. Solid �short-dashed� lines
indicate stability �instability� of wave trains with L-periodic bound-
ary conditions. Profiles of labeled waves are presented in Figs. 3
and 4. a=0, b and � as in Fig. 1.
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cycles that converge to a homoclinic connection in the limit
of large periods.

It is well known that, for large periods, the branch of limit
cycles is strongly determined by the asymptotic properties of
the approached homoclinic connection. For the case of a ho-
moclinic connection to an equilibrium with a real leading
eigenvalue �the closest to the imaginary axis�, the branch of
limit cycles in the “period-parameter” plane is monotonic, at
least for large periods. If a pair of complex-conjugate eigen-
values are the leading eigenvalues, the branch of limit cycles
approaches the limit in an oscillating manner �14,19�. For
waves in reaction-diffusion systems this means that the dis-
persion curve for large L is determined by the decay behind
the solitary pulse, since it is typically slower than the growth
at the pulse front.

Decreasing the parameter a from 0.12 to 0.02, we detect
a transition from monotonoic to oscillatory dispersion �see
Fig. 1�. In both cases there exists a well-defined limit for the
velocity of wave trains for large wavelengths L. Each oscil-
lation of the oscillatory dispersion relation adds a small-
amplitude secondary maximum to the solution profile.

The oscillating dispersion relation of Fig. 1�b� turns into
the multivalued dispersion relation of Fig. 2 by a sequence of
pitchfork bifurcations. The bifurcation points are distin-
guished by the conditions

dL

dc
= 0 and

d2L

dc2 = 0. �7�

Each bifurcation results in the emergence of two fur-
ther saddle node �SN� bifurcations, which are given by
dL /dc=0 on the dispersion curve. These SN points confine a
bistable wavelength band, where three solutions coexist. Two
of them are stable and one is unstable. Simulation of the
wave solutions of the reaction-diffusion equation �1� with
periodic boundary conditions and variable domain size re-
veals hysteresis-type transitions between the two stable
branches of wave trains. Note that there is only a finite num-
ber of bistability domains in the small-wavelength range.

Three coexisting wave trains for the same wavelength are
depicted in Fig. 3. The high-amplitude pulse heads look
similar for all three wave trains. The stable wave trains �la-
bels 1 and 3 in Fig. 3� are distinguished by the number of the
secondary maxima between two successive pulse heads. In
the case of the unstable wave train �label 2 in Fig. 3�, the
secondary maximum is not completely developed. Following
the dispersion curve to large wavelengths, the number of
secondary maxima between successive pulse heads in-
creases. Figure 4 illustrates the decay of the amplitude of the
secondary maxima.

Let us now take a closer look at the stability of the coex-
isting wave trains with respect to the full reaction-diffusion
system. Within our numerical accuracy we detect two kinds
of instability points within a bistable wavelength band,
namely, P points close to dc /dL=0 and SN points with
dL /dc=0. Two sections of the dispersion relation of Fig. 2
which contain instability points are enlarged in Fig. 5.
Curves of the essential spectrum are shown for selected wave
trains. When we pass the upper P point by increasing the
wavelength, a circle of eigenvalues flips from the left com-

plex half plane to the right one. That circle captures all
	� �0,1�. �=0 holds for 	=0, i.e., the circle is attached to
the origin of the complex plane. Following the dispersion
curve and passing through the upper SN point, the circle of
eigenvalues detaches from the origin. The circle remains in
the right half plane until it attaches to the imaginary axis
again at the lower SN point, and then flips to the left half
plane at the lower P point. Beyond the bistable wavelength
bands, the circle of eigenvalues does not detach from the
imaginary axis in the right complex half plane. Computations
of the discrete spectrum for L-periodic boundary conditions
support the assumption that the described circle of eigenval-
ues is the only critical subset of the essential spectrum. We
draw the follwing conclusions.

�i� Wave trains are stable with respect to arbitrarily large
NL-periodic boundary conditions if we approach the first up-
per P point from small wavelengths, and in the regions be-

FIG. 3. Activator u and inhibitor v profiles along one wave-
length L=290 �a�. Propagation from left to right. Labels refer to
those in Fig. 2. Appearance of a secondary maximum is enlarged in
lower panels; for the activator in �b� and the inhibitor in �c�. a=0; b
and � as in Fig. 1.

FIG. 4. Activator u and inhibitor v profile along one wavelength
L=725 of label 4 in Fig. 2. Six secondary maxima of the profile
correspond to six maxima of the dispersion relation counting from
label 1 in Fig. 2. Propagation from left to right. a=0; b and � as in
Fig. 1.
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tween the lower and the upper P points of consecutive
bistable wavelength bands.

�ii� Waves are stable for N=1 and unstable for N
2 be-
tween P and SN points.

�iii� Waves are unstable for all N between the upper and
the lower SN points of a bistability band.

�iv� Waves are stable for N=1 beyond all bistable wave-
length bands. Stability �instability� for N
2 is determined
by the positive �negative� slope of the dispersion relation.

The width as well as the number of bistable wavelength
bands increase with decreasing excitation parameter a. Bista-
bility persists when the system passes through the Hopf bi-
furcation of the kinetics; however, we expect an additional
instability for large wavelengths caused by the instability of
the homogeneous stationary state �16�. Slightly below the
Hopf bifurcation of the kinetics the traveling wave ODE �3�
still possesses a homoclinic connection to the saddle focus.

In the following, the dispersion curve discussed so far will
be referred to as the primary connected dispersion curve.

IV. EMERGENCE OF ISOLAS

We find the destruction of the primary connected disper-
sion curve upon decrease of the parameter a to values
slightly above the Canard explosion of the local dynamics.
Additional unstable wave trains play an important role in the
destruction scenario.

In Figs. 6�a� and 6�b�, two corresponding dispersion
curves are shown, which exist in addition to the primary
connected dispersion curve. We find again nonmonotonic
curves displaying pronounced downward sawteeth. The left
end point of the dispersion curve in Fig. 6�a� originates from
a period-doubling bifurcation on the primary dispersion

curve. Close to the end point, the u profiles of the waves
have two maxima within one wavelength. One of these
maxima disappears before label 1 is reached �see Fig. 6�a��.
The wave picks up a secondary maximum with each saw-
tooth passed through when we go along the dispersion curve
from the small- to the large-wavelength range. This second-
ary maximum develops into a pulse head on the horizontal
part of the dispersion curve following the sawtooth. The pro-
file displays one pulse head and one secondary maximum at
label 2, and two pulse heads and one secondary maximum at
label 3. The dispersion curve in Fig. 6�b� is a closed curve in
the �c ,L� plane, a so-called isola. The corresponding u pro-
files exhibit one pulse head with two secondary maxima at
label 4, and a sequence “pulse head, secondary maximum,
pulse head, secondary maximum” at label 5. There exist even
more dispersion curves which are not plotted. Some of them
originate from period-doubling bifurcations on the primary
dispersion curve. Parts of these curves consist of stable
waves.

The primary connected dispersion curve is destroyed
upon decreasing a in bifurcations which are collisions with
dispersion curves like those shown in Fig. 6�a� and 6�b�. The
collision for the smallest wavelength happens first. All the
other pictured collisions take place at the same smaller value
of a �within our numerical accuracy�. A new group of isolas
emerges as a consequence of these bifurcations �Figs. 6�c�
and 6�d��. At the bifurcation point we have a transcritical
bifurcation which unfolds into two saddle-node bifurcations.
A comparison of the profile belonging to point 2 in Fig. 6�a�
with the one of point 3 in Fig. 2 illustrates that profiles on the
corresponding branches may become identical at the bifurca-
tion point as required for a transcritical bifurcation. As a
consequence of the transcritical bifurcation, a velocity gap
for wave trains with secondary maxima opens up.

FIG. 5. Left panels �a� and �b� display enlargements of the bistable dispersion relation presented in Fig. 2. Solid �short-dashed� line
indicates stable �unstable� wave trains with NL-periodic boundary conditions for all N=1,2 ,3 , . . .. Long-dashed line indicates stability for
N=1 and instability for N
2. Right panels �c�–�f� display subsets of essential spectra of pulse trains with reference to labels c– f in �a�.
Squares indicate eigenvalues for N=1. Close to the P point a critical circle crosses the imaginary axis from left to right. We define the P
point as the crossing of the eigenvalue belonging to 	=0.5. The circle detaches from the imaginary axis at the SN point. a=0; b and � as in
Fig. 1.
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Note that the first and second �counting from left to right�
collisions occur between the primary connected dispersion
curve and the curve in Fig. 6�a� while the third and fourth
occur between the primary connected dispersion curve and
the curve in Fig. 6�b�. More dispersion curves have to be
taken into account to describe the fragmentation of the pri-
mary connected dispersion curve at larger wavelengths.

Isolas first shrink and finally disappear, when a is de-
creased further as illustrated by Figs. 6�d�–6�f�. As isolas
shrink, the horizontal branch of the unstable dispersion
curves shown in Figs. 6�a� and 6�b� shifts to larger velocity
values. At parameter values close to the complete disappear-
ance of isolas, the primary dispersion curve has been frag-
mented to such a degree that gaps in wavelength open up
between isolas. Finally, all stable branches of the primary
dispersion curve vanish but one �compare Fig. 6�f��.

V. CONCLUSION

Taking the FHN model as a representative example for
excitable media, we study changes in the dispersion relation
of periodic wave trains occurring under variation of an ex-
citability parameter a. While normal dispersion is found for
large values of a corresponding to excitable kinetics, anoma-
lous dispersion with oscillating dispersion curves and finally
bistable wavelength bands is obtained when the parameter a
is decreased toward the Hopf bifurcation to oscillatory kinet-
ics and slightly beyond.

The primary bistable dispersion curve is found to break
up into disconnected fragments. We reveal the importance of
so far undiscovered additional dispersion curves of unstable
wave trains in this fragmentation. Transcritical collisions
with the additional dispersion curves lead to the destruction
of the primary one. The process results in the formation of
isolas which represent closed segments of the dispersion
curve. The stable wave trains of isolas display secondary
maxima between pulse heads. In the small-wavelength re-
gion, however, there remains a large connected segment of
the primary dispersion curve. The corresponding wave trains
do not display secondary maxima.

Bistable dispersion resulting from pitchfork bifurcations
was first reported in Ref. �12� and further studied in the
context of the transition between phase and trigger waves in
Ref. �20�. However, the formation of isolas and the existence
of additional dispersion curves were not observed.

In accordance with the results for the Oregonator model
we ascertain numerically a bistable dispersion relation of the
FHN model close to the Hopf bifurcation of the local kinet-
ics. Corresponding instability points �P and SN� within the
bistable wavelength bands were found in both models. In
distinction to the Oregonator results, here we describe a
mechanism for the breakup of the primary bistable disper-
sion curve.

The discussed bifurcations of wave trains bear some
similarity to the emergence of a dispersion gap in a model
of intracellular Ca2+ dynamics �13� where a stable and an

FIG. 6. �Color online� �a�, �b� Additional dispersion curves and sketches of corresponding wave trains �activator profile� which are
completely unstable. The dashed curve �blue online� in �a� arises from a period-doubling bifurcation at the primary dispersion curve. A
small-amplitude maximum blows up along each plateau whereas a small-amplitude maximum develops within each sawtooth. The dashed
curve in �b� �magenta online� is closed, a so-called isola. �c� Dashed curves of �a� and �b� �blue and magenta online� approach the primary
dispersion �green online� before partial stable isolas separate. �d� Separated isolas and broken stable branches. A velocity gap opens up for
wave trains with secondary maxima. �e� As isolas shrink the velocity gap expands. �f� Between isolas wavelength gaps open up. A solid
�dashed� dispersion curve indicates stability �instability� of wave trains with L-periodic boundary conditions. b and � as in Fig. 1.
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unstable branch of disjunct dispersion curves collide. In
this case, however, only one collision takes place and the
two colliding curves are monotonic over a wide range
of wavelengths. Consequently, a gap opens up repre-
senting forbidden velocities for which no periodic wave train
exists.

Isola formation has been reported in the context of a non-
transverse Shil’nikov-Hopf bifurcation �21�. Our scenario of
isola formation is different since it involves several coexist-
ing dispersion relations. However, some observations not in
the focus of this paper indicate similarity with a scenario

close to a nontransverse Shil’nikov-Hopf bifurcation. While
decreasing the parameter a, we detected that the saddle-focus
homoclinic connection merges with another homoclinic con-
nection in a fold at a=−0.002 637 3. Both homoclinic con-
nections are approached by periodic orbits, i.e., we have two
wiggly curves in the �L ,c� plane approaching �nearly� the
same velocity c for large L. Collisions between both wiggly
curves lead to isola formation at large wavelengths. That
isola formation promises similarities with a case described in
Ref. �21�.
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